LECTURE 30 to 31 – ACCESSORIES USED IN FLUID POWER SYSTEMS

SELF EVALUATION QUESTIONS AND ANSWERS

- 1. Determine the Beta ratio of a filter when , during test operation, 20000 particles greater than 10 μm enter the filter and 2000 of these particles pass through the filter. What is the beta efficiency.
- 2. The pressure drop across a sticking control valve is observed to be 80 bar if the fluid has a specific gravity of 0.9 and a flow rate of 0.2 LPS, estimate the rise in temperature of fluid that can be attributed to the control valve.
- 3 Oil at 50°C and 70 bar is flowing through a pressure relief valve at 40 LPM. What is the downstream oil temperature?
- 4. Hydraulic machine has the following duty cycle. Idle at 15 bar for 30 seconds. Clamp work piece at 100 bar for 5 seconds. Approach at 15 bar for 2 seconds, perform work at 300 bar for 3 seconds, declamp, return at 15 bar for 2 seconds. The pump flow is 100 LPM. Total surface area of the oil reservoir is 2.5 m^2 . Hydraulic pipe line is 25 mm in diameter and 2500 mm long. Calculate the netw wasted energy that needs to be dissicpated and recommend a suitable heat exchanger if necessary. Room temperature is 20 °C. Volumetric efficiency of pump =0.85. density of the oil used $=806 \text{ kg/m}^3$.
- 5. A hydraulic pump operates at 70 bars and delivers oil at 0.00126 m³/s to a hydraulic actuator. Oil discharges through pressure relief valve (PRV) during 50 % of the cycle time. The pump has an overall efficiency of 85 % and 10 % of power is lost due to frictional pressure losses in the hydraulic lines. What heat exchanger rating is required to dissipate all the generated heat.

- 6. What would be size an adequate size of reservoir for a hydraulic system using 0.001 m³/s pump?
- 7. A pump delievers oil to a hydraulic motor at 10 LPM at a pressure of 15 MPa. If the motor delivers 2kW and 70% of the power loss is due to internal leakage, which heats the oil, calculate the heat generation rate in kJ/min.

Q1 Solution

$$BetaRatio = \frac{\text{No of upstream particles of size} > \textit{N} \ \mu\text{m}}{\text{No of downstream paricles of size} > \textit{N} \ \mu\text{m}} = \frac{20000}{200} = 100$$

$$Beta \ Efficiency = \frac{\text{No of upstream particles-No of downstream particles}}{\text{Noofupstream particles}} = \frac{20000 - 2000}{20000} = 90\%$$

Beta Efficiency = 1 -
$$\frac{1}{\text{BetaRatio}}$$
 = 1 - $\frac{1}{100}$ = 90 %

Q2 Solution: The heat generated by the pressure drop across the control valve is

Heat loss generated = $80 \times 10^5 \times 0.2 \times 10^{-3} = 1600 \text{ Watts/s}$

The mass flow rate of fluid through the valve is computed from

Mass flow rate kg/s, = $900kg/m^3 \times 0.20 \times 10^{-3} m^3/sec = 0.18 kg/s$

Solving for the temperature rise in °C of the fluid

Temperature incrase (°C) =
$$\frac{\text{Heat generated (kW)}}{\text{oil specifica weight } \binom{kJ}{kg^{\circ}\mathbb{C}}x \text{ oil flow rate (}^{kg}/_{S})}$$
$$= \frac{1600}{0.18\times1.8\times1000} = 4.94 \,^{\circ}\mathbb{C}$$

Q3 Solution

First calculate the power lost/wasted

Power Lost = P (bar)
$$\times$$
 Q (LPM) = (70 x10⁵ N/m²) (40x10⁻³ m³/min) x1/60(seconds) = 4370 watts = 4.67 kW

Next calculate the oil flow-rate in units of kg/second and the temperature increase:

Oil flow-rate (kg/s) =
$$895 \times \text{oil flow-rate}$$
 (m³/s) = $895 \times 40 \times 10^{-3} / 60 = 0.596 \text{ kg/s}$

Temperature (°C) =
$$\frac{\text{heat-generation rate (kW)}}{\text{Oil specific heat } (\frac{\text{kJ}}{\text{kg}} \text{°C}) \text{x oil flow-rate (kg/s)}} = \frac{4.67}{1.8 \text{x} 0.596} = 4.35 \text{°C}$$

Downstream oil temperature = 50+4.35 = 54.35°C

Q4 Solution

Power dissipated in kW

$$\frac{P \times Q}{600 \times \eta} = \frac{15 \times 100}{600 \times 0.85} = 2.94 \text{ kW}$$

Energy consumed during 30 seconds.

$$\frac{2.94 \times 30}{3600} = 0.0245 \, kWh$$

Power dissipated during clamping

$$\frac{100 \times 100}{600 \times 0.85} = 19.6 \, kW$$

Since clamping takes place in 5 seconds, energy consumed is

$$\frac{19.6 \times 5}{3600} = 0.027 \, kWh$$

Power dissipated during approach

$$\frac{100 \times 15}{600 \times 0.85} = 2.94 \ kW$$

Since approach takes place in 2 seconds, energy consumed is

$$\frac{2.94 \times 2}{3600} = 0.001 \, kWh$$

Power dissipated during Forward (work)

$$\frac{100 \times 300}{600 \times 0.85} = 58.8 \, kW$$

Since work takes place in 3 seconds, energy consumed is

$$\frac{58.8 \times 3}{3600} = 0.049 \, kWh$$

Power dissipated during retrun

$$\frac{100 \times 15}{600 \times 0.85} = 2.94 \, kW$$

Since return takes place in 2 seconds, energy consumed is

$$\frac{2.94 \times 2}{3600} = 0.001 \, kWh$$

Total power dissipated in 42 seconds =
$$0.058 \text{ kWh} = \frac{0.058 \times 3600}{42} = 5 \text{ kW}$$

Mass flow rate = $860 \times 0.001 = 0.86$ kg/second

Temperature (°C) =
$$\frac{\text{heat-generation rate (kW)}}{\text{Oil specific heat } (\frac{kJ_{\circ}c}{kg}C)x \text{ oil flow-rate (kg/s)}} = \frac{5}{1.8 \times 0.86} = 3.22 \text{ °C}$$

Temperature rise is small, therfore there is no need for a heat exchanger.

Q5 Solution

Pump power loss = pump power input – pump power output

Pump power loss =
$$\frac{\text{Power output}}{\text{overall efficiency}}$$
 - power output

Pump power loss =
$$\left\{\frac{1}{\eta_0} - 1\right\}$$
 pump power output

Pump power loss =
$$\left\{ \frac{1}{85} - 1 \right\} \times \left(\frac{70 \times 10^5 \times 0.00126}{1000} \right) = 1.56 \text{ kW}$$

Pump average loss =
$$\{0.50\} \times \left(\frac{70 \times 10^5 \times 0.00126}{1000}\right) = 4.41 \text{ kW}$$

lineaverageloss =
$$\{0.50\} \times 0.10 \times \left(\frac{70 \times 10^5 \times 0.001260}{1000}\right) = 0.44 \text{ kW}$$

Total loss = 1.56+4.41+0.44=6.41 kW

Select heat exchanger rating of 6.41 kW

Q6 Solution

Size of the reservoir = 3 to 4 times the capacity of pump = $4 \times capacity of pump (LPM)$

$$4 \times 0.001 = 4 \times 60 \ (LPM) = 240 \ L \ tank \ is \ required$$

Q7 Solution

Pump power
$$=\frac{0.01}{60} \times 150000 = 2.5 \text{ kW}$$

Motor delivers 2 kw ,therfore loss is $0.5\ kW$

power loss due to leakage =
$$0.7 \times 0.5 = 0.35$$
kW

power loss due to leakage =
$$0.35 \times 60 = 21 \text{ kJ/min}$$